Respuesta :

Answer:

To determine if the expressions \(5x^2 - 15\) and \(2x^2 - 4x + 7 - (3x^2 - 4x - 8)\) are equivalent, we first need to simplify the second expression.

Starting with:

\[ 2x^2 - 4x + 7 - (3x^2 - 4x - 8) \]

Distribute the negative sign across the terms in the parentheses:

\[ 2x^2 - 4x + 7 - 3x^2 + 4x + 8 \]

Now, combine like terms:

- Combine \(2x^2\) and \(-3x^2\):

\[ -x^2 \]

- Combine \(-4x\) and \(+4x\):

\[ 0x \]

- Combine \(7\) and \(8\):

\[ 15 \]

So, the simplified form of the second expression is:

\[ -x^2 + 15 \]

Comparing this with the first expression:

\[ 5x^2 - 15 \]

Clearly, the expressions are not equivalent as one is \(5x^2 - 15\) and the other is \(-x^2 + 15\). Thus, \(5x^2 - 15\) is not equivalent to \(2x^2 - 4x + 7 - (3x^2 - 4x - 8)\).

Step-by-step explanation:

Answer:

No, not equivalent

Step-by-step explanation:

[tex]2 {x}^{2} - 4x + 7 - (3 {x}^{2} - 4x - 8) = [/tex]

[tex]2 {x}^{2} - 4x + 7 - 3 {x }^{2} + 4x +8[/tex]

[tex] = 2 {x}^{2} - 3 {x}^{2} + 15 [/tex]

[tex] = - {x}^{2} + 15 [/tex]

Hence,

[tex]5 {x}^{2} - 15 \: \: is \: not \: equivalent \: to \: \: - {x }^{2} + 15[/tex]