Respuesta :

msm555

Answer:

[tex] x = 36 [/tex]

Step-by-step explanation:

To find [tex] x [/tex] in the equation [tex] \log_x 6 = 0.5 [/tex], we'll use the definition of logarithms:

If [tex] \log_x y = z [/tex], then [tex] x^z = y [/tex].

So, in our equation:

[tex] \log_x 6 = 0.5 [/tex]

We rewrite this in exponential form:

[tex] x^{0.5} = 6 [/tex]

Now, to solve for [tex] x [/tex], we'll raise both sides of the equation to the power of 2:

[tex] (x^{0.5})^2 = 6^2 [/tex]

[tex] x^{0.5\cdot 2 } = 6^2 [/tex]

[tex] x = 6^2 [/tex]

[tex] x = 36 [/tex]

So, the value of [tex] x [/tex] is [tex] \boxed{36} [/tex].