please help me i’m js stuck in this one

Answer: See the attached image.
Step-by-step explanation:
We will use the slope formula for each of the given coordinate points. Let (3, 2) be (x1, y1) and the other point be (x2, y2).
We do not need to compute most of these all of the way, we just need to figure out if they are positive, equal to zero, or negative.
[tex](4, 5) = \displaystyle \frac{y_{2} -y_{1} }{x_{2} -x_{1} }=\frac{3-5}{4-3}=\frac{-}{+} < 0[/tex]
[tex](-2, 4) = \displaystyle \frac{y_{2} -y_{1} }{x_{2} -x_{1} }=\frac{2-4}{3--2} =\frac{-}{+} < 0[/tex]
[tex](6, 2) = \displaystyle \frac{y_{2} -y_{1} }{x_{2} -x_{1} }=\frac{2-2}{3-6} =0[/tex]
[tex](1, 4) = \displaystyle \frac{y_{2} -y_{1} }{x_{2} -x_{1} }=\frac{2-4}{3-1} =\frac{-}{+} < 0[/tex]
[tex](5, 3) = \displaystyle \frac{y_{2} -y_{1} }{x_{2} -x_{1} }=\frac{2-3}{3-5} =\frac{-}{-} > 0[/tex]
[tex](-3, -3) = \displaystyle \frac{y_{2} -y_{1} }{x_{2} -x_{1} }=\frac{2--3}{3--3} =\frac{+}{+} > 0[/tex]