Answer:
36 π square units
Step-by-step explanation:
To find the area of a circle given the radius [tex]\sf r [/tex], we can use the formula for the area of a circle:
[tex]\large\boxed{\boxed{\sf \textsf{Area} = \pi r^2}} [/tex]
Given that the radius [tex]\sf r [/tex] is [tex]\sf 6 [/tex] units, substitute [tex]\sf r = 6 [/tex] into the formula:
[tex]\sf \textsf{Area} = \pi (6)^2 [/tex]
[tex]\sf \textsf{Area} = \pi \times 36 [/tex]
[tex]\sf \textsf{Area} = 36\pi [/tex]
Therefore, the area of the circle is [tex]\sf \boxed{36\pi} [/tex] square units.