alaiya9
contestada

NEED HELP ASAP 50 POINTS!!

Height of Triangle =__m
Side of the Square = __m
Unknown base of the Trapezoid =__m
Height of the Trapezoid =__m

Area of Triangle = __m^2

Area of the Square = __m^2

Area of the Trapezoid = __m^2

Area of Composite figure = __m^2

NEED HELP ASAP 50 POINTS Height of Triangle m Side of the Square m Unknown base of the Trapezoid m Height of the Trapezoid m Area of Triangle m2 Area of the Squ class=

Respuesta :

Answer :

  • Height of Triangle = 12 m
  • Side of the Square = 12 m
  • Unknown base of the Trapezoid = 12 m
  • Height of the Trapezoid = 3 m

  • Area of Triangle = 30 m^2

  • Area of the Square = 144 m^2

  • Area of the Trapezoid = 27 m^2

  • Area of Composite figure = 201 m^2

Explanation :

height of the triangle

  • height = √(hypotenuse^2 - base^2)
  • height = √((13m)^2 - (5m)^2)
  • height = 12 m

side of the square = height of the triangle

  • side = 12 m

unknown base = side of the square

  • base = 12 m

height of the trapezoid = 15 m - side of the square

  • height = 15m - 12m
  • height = 3m

area of the triangle

  • 1/2*base*height
  • 1/2*5m*12m
  • 30 m^2

area of the square

  • side^2
  • (12m)^2
  • 144 m^2

area of the trapezoid

  • 1/2(base1 + base2)*height
  • 1/2(6m + 12m)*3m
  • 27 m^2

area of the composite figure

  • 30 m^2 + 144 m^2 + 27 m^2
  • 201 m^2
msm555

Answer:

[tex]\textsf{ Height of Triangle} = \boxed{ 12} \textsf{m}[/tex]

[tex]\textsf{Side of the Square }= \boxed{12 } \textsf{m}[/tex]

[tex]\textsf{Unknown base of the Trapezoid} =\boxed{12 } \textsf{m}[/tex]

[tex]\textsf{Height of the Trapezoid} =\boxed{3 } \textsf{m}[/tex]

[tex]\textsf{Area of Triangle }= \boxed{ 30} \textsf{m}^2[/tex]

[tex]\textsf{Area of the Square} = \boxed{144 } \textsf{m}^2[/tex]

[tex]\textsf{Area of the Trapezoid }= \boxed{27 } \textsf{m}^2[/tex]

[tex]\textsf{Area of Composite figure} = \boxed{ 201} \textsf{m}^2[/tex]

Step-by-step explanation:

Let's break down the calculations step by step:

Height of the Triangle:

The height of the triangle can be found using the Pythagorean theorem:

[tex]\sf \textsf{Height} = \sqrt{\textsf{Hypotenuse}^2 - \textsf{Base}^2} [/tex]

Given:

  • Hypotenuse = 13 meters
  • Base = 5 meters

So,

[tex]\sf \textsf{Height} = \sqrt{(13 \, \textsf{m})^2 - (5 \, \textsf{m})^2} [/tex]

[tex]\sf \textsf{Height} = \sqrt{169 \, \textsf{m}^2 - 25 \, \textsf{m}^2} [/tex]

[tex]\sf \textsf{Height} = \sqrt{144 \, \textsf{m}^2} [/tex]

[tex]\sf \textsf{Height} = 12 \, \textsf{m} [/tex]

Side of the Square:

Given that the side of the square is equal to the height of the triangle:

[tex]\sf \textsf{Side} = 12 \, \textsf{m} [/tex]

Base of the Trapezoid:

Given that the base of the trapezoid is equal to the side of the square:

[tex]\sf \textsf{Base} = 12 \, \textsf{m} [/tex]

Height of the Trapezoid:

Given that the height of the trapezoid is equal to the difference between the total height and the side of the square:

[tex]\sf \textsf{Height} = 15 \, \textsf{m} - 12 \, \textsf{m} [/tex]

[tex]\sf \textsf{Height} = 3 \, \textsf{m} [/tex]

Area of the Triangle:

[tex]\sf \textsf{Area} = \dfrac{1}{2} \times \textsf{Base} \times \textsf{Height} [/tex]

[tex]\sf \textsf{Area} = \dfrac{1}{2} \times 5 \, \textsf{m} \times 12 \, \textsf{m} [/tex]

[tex]\sf \textsf{Area} = 30 \, \textsf{m}^2 [/tex]

Area of the Square:

[tex]\sf \textsf{Area} = \textsf{Side}^2 [/tex]

[tex]\sf \textsf{Area} = (12 \, \textsf{m})^2 [/tex]

[tex]\sf \textsf{Area} = 144 \, \textsf{m}^2 [/tex]

Area of the Trapezoid:

[tex]\sf \textsf{Area} = \dfrac{1}{2} \times (\textsf{Base}_1 + \textsf{Base}_2) \times \textsf{Height} [/tex]

[tex]\sf \textsf{Area} = \dfrac{1}{2} \times (6 \, \textsf{m} + 12 \, \textsf{m}) \times 3 \, \textsf{m} [/tex]

[tex]\sf \textsf{Area} = 27 \, \textsf{m}^2 [/tex]

Area of the Composite Figure:

[tex]\sf \textsf{Area} = \textsf{Area of Triangle} + \textsf{Area of Square} + \textsf{Area of Trapezoid} [/tex]

[tex]\sf \textsf{Area} = 30 \, \textsf{m}^2 + 144 \, \textsf{m}^2 + 27 \, \textsf{m}^2 [/tex]

[tex]\sf \textsf{Area} = 201 \, \textsf{m}^2 [/tex]

Therefore, the area of the composite figure is [tex] \boxed{201 \, \textsf{m}^2} [/tex].