Find the missing side lengths. Leave your answer as radicals in simplest form.

(I already have the answers down, I just need help with the work/how to find the answer!) I mainly need help with 3, 5, and 6. (Best/first answer will get brainliest!)

Thank you!​

Find the missing side lengths Leave your answer as radicals in simplest formI already have the answers down I just need help with the workhow to find the answer class=

Respuesta :

Answer:

[tex]\text{3. In case of this question, you may find the value of }v\text{ either by using a }\\\text{trigonometric ratio or use the concept of isosceles right triangle.}[/tex]

[tex]\textbf{Using trigonometric ratio:}\\\\\tan45^\circ=\dfrac{5\sqrt{2}}{v}\\\\\text{or, }1=\dfrac{5\sqrt{2}}{v}\\\\\text{or, }v=5\sqrt{2}[/tex]

[tex]\text{Remember, the opposite side of the angle taken as reference, in this case }\\45^\circ\text{ is the perpendicular}(p)\text{ and the remaining leg is the base}(b).\\\text{Here, we used tangent ratio because the side opposite to the reference angle}\\45^\circ\text{ was given already. But you may also use the cotangent ratio.}[/tex]

[tex]\textbf{Isosceles right triangle}\\\text{The two angles of the given triangle are }90^\circ\text{ and }45^\circ,\text{ so the remaining}\\\text{angle will be }45^\circ.\text{ So, the given triangle is isosceles so, the two sides }\\\text{opposite to the equal angles, }45^\circ\text{ and }45^\circ\text{ will also be equal.}[/tex]

[tex]\therefore\ v=5\sqrt2[/tex]

[tex]\text{Now, you may simply use the pythagoras theorem to calculate }w.\\w=\sqrt{v^2+\big(5\sqrt2\big)^2}=\sqrt{(5\sqrt{2})^2+50}=\sqrt{50+50}=10[/tex]

[tex]\text{Or you may use the trigonometric ratios again.}[/tex]

[tex]\text{4. Solution:}\\\\\sin45^\circ=\dfrac{x}{6}\\\\\text{or, }6\sin45^\circ=x\\\\\text{or, }x=\dfrac{6}{\sqrt2}\\\\\text{or, }x=\dfrac{6}{\sqrt2}\times\dfrac{\sqrt2}{\sqrt2}=\dfrac{6\sqrt2}{2}\\\\\text{or, }x=3\sqrt2[/tex]

[tex]\text{Using the pythagoras theorem,}\\6^2=x^2+y^2\\\text{or, }36=(3\sqrt2)^2+y^2\\\text{or, }36=18+y^2\\\text{or, }y^2=18\\\text{or, }y=3\sqrt2[/tex]

Notice, this is again the right angled isosceles triangle because the remaining angle is 45 degrees, so x = y.

[tex]\text{5. Solution:}\\\\\sin60^\circ=\dfrac{x}{\dfrac{14\sqrt3}{3}}\\\\\text{or, }\dfrac{\sqrt3}{2}=\dfrac{3x}{14\sqrt3}\\\\\text{or, }14\sqrt3\times\sqrt3=6x\\\text{or, }6x=42\\\therefore\ x=7[/tex]

[tex]\text{Using the pythagoras theorem,}\\x^2+y^2=\bigg(\dfrac{14\sqrt3}{3}\bigg)^2\\\text{or, }7^2+y^2=\dfrac{196}{3}\\\\\text{or, }y^2=\dfrac{196}{3}-7^2=\dfrac{196}{3}-49\\\\\text{or, }y^2=\dfrac{196-147}{3}=\dfrac{49}{3}\\\\\text{or, }y=\dfrac{7}{\sqrt3}=\dfrac{7}{\sqrt3}\times\dfrac{\sqrt3}{\sqrt3}\\\\\therefore\ y=\dfrac{7}{\sqrt3}[/tex]

[tex]\text{Or you may simply use a relevant trigonometric ratio.}\\\cos60^\circ=\dfrac{y}{\dfrac{14\sqrt3}{3}}\\\\\text{or, }\dfrac{1}{2}=\dfrac{y}{\dfrac{14\sqrt3}{3}}\\\\\text{or, }2y=\dfrac{14\sqrt3}{3}\\\\\text{or, }6y=14\sqrt3\\\\\text{or, }y=\dfrac{7\sqrt3}{3}[/tex]

Answer:

Step-by-step explanation:

we will use trigonometric ratios as well as the Pythagoras theorem to find the missing lengths:

trigonometric ratios state that:

cos ∅ = base/hypotenuse

sin ∅ = perpendicular/hypotenuse

tan ∅ = perpendicular/base

Pythagoras' theorem states that:

hypotenuse² = base² + perpendicular²

3.

tan 45° = v / 5√2

1 = v/7.05

i.e. v = 7.05

u² = (5√2)² + v²

    = (7.05)² + (7.05)² = 50 + 50 = 100

u = √100

i.e. u = 10

4.

tan 45° = y / 5/2

1 = y/2.5

i.e. y = 2.5

x² = y² + (5/2)²

   = 2.5² + 2.5² = 6.25 + 6.25 = 12.5

x = √12.5 = 3.54

5.

sin 45° = x/6

6 * sin 45° = x

x = 6 * .707 = 4.24

6² = x² + y²

36 = 17.98 + y²

36 - 17.98 = y²

y = √18.02 = 4.24

6.

cos 60° = y / 14√3/3

.5 = y/8.08

y = .5 * 8.08 = 4.04

(8.08)² = x² + y²

65.29 = x² + (4.04)²

65.29 - 16.32 = x²

x² = 48.97

x = √48.97 = 6.99 = 7