Find the diameter of each circle.
π is 3.14 or pie.

1) area = 4π in²
2) circumference = 162π yd
3) area = 49π yd²
4) circumference = 30π yd

please help I don't understand this and I know it's easy but still.

Find the diameter of each circleπ is 314 or pie1 area 4π in2 circumference 162π yd3 area 49π yd4 circumference 30π ydplease help I dont understand this and I kn class=

Respuesta :

Answer:

  1. 4
  2. 162
  3. 7
  4. 30

Step-by-step explanation:

To find the diameter from the area is to first get rid of pi. The equation for area of a circle is pi * r² and the diameter is twice the radius. So, 4 is equal to the radius squared. The square root of 4 is 2 and doubling it gives the diameter which is 4. For the second one, the formula to get circumference is 2*pi*radius. First, you can cancel the pi, so the answer would be 162 divided by two to get 81, and then doubled to get diameter which is 162. For the third one, use the same thing as the first strategy to get 7. Use the same strategy to find the last one.

msm555

Answer:

17) 4 inches

18) 14 yards

19) 162 yards

20) 30 yards

Step-by-step explanation:

To find the diameter of each circle, we'll use the following formulas:

Area of a circle: [tex]\sf  \textsf{Area} = \pi r^2 [/tex]

Circumference of a circle: [tex]\sf  \textsf{Circumference} = 2 \pi r [/tex]

Given the values provided, we'll use the information to solve for the radius ([tex]\sf  r [/tex]) first, and then calculate the diameter ([tex]\sf  d [/tex]).

17) Area = [tex]\sf  4 \pi [/tex] in²

[tex]\sf \textsf{Area} = \pi r^2 [/tex]

[tex]\sf 4 \pi = \pi r^2 [/tex]

Divide both sides by [tex]\sf  \pi [/tex]:

[tex]\sf r^2 = 4 [/tex]

Take the square root of both sides:

[tex]\sf r = \sqrt{4} [/tex]

[tex]\sf r = 2 [/tex]

Since diameter [tex]\sf  d = 2r [/tex]:

[tex]\sf d = 2 \times 2 = 4 \textsf{ inches} [/tex]

19) Circumference = [tex]\sf  162 \pi [/tex] yd

[tex]\sf \textsf{Circumference} = 2 \pi r [/tex]

[tex]\sf 162 \pi = 2 \pi r [/tex]

Divide both sides by [tex]\sf  2 \pi [/tex]:

[tex]\sf r = \dfrac{162 \pi}{2 \pi} [/tex]

[tex]\sf r = 81 \textsf{ yards} [/tex]

Since diameter [tex]\sf  d = 2r [/tex]:

[tex]\sf d = 2 \times 81 = 162 \textsf{ yards} [/tex]

18) Area = [tex]\sf  49 \pi [/tex] yd²

[tex]\sf \textsf{Area} = \pi r^2 [/tex]

[tex]\sf 49 \pi = \pi r^2 [/tex]

Divide both sides by [tex]\sf  \pi [/tex]:

[tex]\sf r^2 = 49 [/tex]

Take the square root of both sides:

[tex]\sf r = \sqrt{49} [/tex]

[tex]\sf r = 7 \textsf{ yards} [/tex]

Since diameter [tex]\sf  d = 2r [/tex]:

[tex]\sf d = 2 \times 7 = 14 \textsf{ yards} [/tex]

20) Circumference = [tex]\sf  30 \pi [/tex] yd

[tex]\sf \textsf{Circumference} = 2 \pi r [/tex]

[tex]\sf 30 \pi = 2 \pi r [/tex]

Divide both sides by [tex]\sf  2 \pi [/tex]:

[tex]\sf r = \dfrac{30 \pi}{2 \pi} [/tex]

[tex]\sf r = 15 \textsf{ yards} [/tex]

Since diameter [tex]\sf  d = 2r [/tex]:

[tex]\sf d = 2 \times 15 = 30 \textsf{ yards} [/tex]

So, the diameters of the given circles are:

17) 4 inches

18) 14 yards

19) 162 yards

20) 30 yards