Solve each equation. Use one of the 4 methods you have practiced the last few days:
1. Write exponents using the same base
2. Take the log of both sides
3. Use properties of logs then write as an exponent
4. Use properties of logs then drop the log on both sides

4. Log6 x+log6 (x-9)=2

Respuesta :

msm555

Answer:

[tex]\sf x = 12[/tex]

Step-by-step explanation:

To solve the equation [tex]\sf \log_6(x) + \log_6(x-9) = 2[/tex], we can apply the logarithmic rule for the sum of logarithms:

[tex]\sf \log_b(M) + \log_b(N) = \log_b(M \times N)[/tex]

Using this rule, we can rewrite the equation as:

[tex]\sf \log_6(x \times (x-9)) = 2[/tex]

Now, we simplify inside the logarithm:

[tex]\sf x(x-9) = 6^2[/tex]

[tex]\sf x^2 - 9x = 36[/tex]

Rearranging the equation into a quadratic form:

[tex]\sf x^2 - 9x - 36 = 0[/tex]

Now, we can factor or use the quadratic formula to solve for [tex]\sf x[/tex]. In this case, let's use the quadratic formula:

[tex]\sf x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

Where [tex]\sf a = 1[/tex], [tex]\sf b = -9[/tex], and [tex]\sf c = -36[/tex].

[tex]\sf x = \dfrac{-(-9) \pm \sqrt{(-9)^2 - 4(1)(-36)}}{2(1)}[/tex]

[tex]\sf x = \dfrac{9 \pm \sqrt{81 + 144}}{2}[/tex]

[tex]\sf x = \dfrac{9 \pm \sqrt{225}}{2}[/tex]

[tex]\sf x = \dfrac{9 \pm 15}{2}[/tex]

So, the solutions for [tex]\sf x[/tex] are:

[tex]\sf x_1 = \dfrac{9 + 15}{2} = 12[/tex]

[tex]\sf x_2 = \dfrac{9 - 15}{2} = -3[/tex]

However, we need to verify whether both solutions are valid. In the context of logarithms, the argument of a logarithm cannot be negative.

Therefore, [tex]\sf x = -3[/tex] is an extraneous solution.

Thus, the only valid solution is [tex]\sf x = 12[/tex].