Respuesta :
Answer:
[tex]log_{4}[/tex] ( [tex]\frac{9}{y}[/tex] )
Step-by-step explanation:
Using the property of logarithms
• log a - log b = log ([tex]\frac{a}{b}[/tex] )
given
[tex]log_{4}[/tex] 9 - [tex]log_{4}[/tex] y
= [tex]log_{4}[/tex] ( [tex]\frac{9}{y}[/tex] )
Answer:
[tex]\sf \log_4 \dfrac{9}{y}[/tex]
Step-by-step explanation:
To rewrite the expression [tex]\sf \log_4 9 - \log_4 y[/tex] as a single logarithm using the properties of logarithms, we can apply the quotient rule, which states:
[tex]\sf \log_a \dfrac{m}{n} = \log_a m - \log_a n[/tex]
So, we can rewrite the expression as:
[tex]\sf \log_4 \dfrac{9}{y}[/tex]
Therefore, the expression [tex]\sf \log_4 9 - \log_4 y[/tex] can be simplified to:
[tex]\sf \log_4 \dfrac{9}{y}[/tex]