Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.
Log4 9-log4 y

Respuesta :

Answer:

[tex]log_{4}[/tex] ( [tex]\frac{9}{y}[/tex] )

Step-by-step explanation:

Using the property of logarithms

• log a - log b = log ([tex]\frac{a}{b}[/tex] )

given

[tex]log_{4}[/tex] 9 - [tex]log_{4}[/tex] y

= [tex]log_{4}[/tex] ( [tex]\frac{9}{y}[/tex] )

msm555

Answer:

[tex]\sf \log_4 \dfrac{9}{y}[/tex]

Step-by-step explanation:

To rewrite the expression [tex]\sf \log_4 9 - \log_4 y[/tex] as a single logarithm using the properties of logarithms, we can apply the quotient rule, which states:

[tex]\sf \log_a \dfrac{m}{n} = \log_a m - \log_a n[/tex]

So, we can rewrite the expression as:

[tex]\sf \log_4 \dfrac{9}{y}[/tex]

Therefore, the expression [tex]\sf \log_4 9 - \log_4 y[/tex] can be simplified to:

[tex]\sf \log_4 \dfrac{9}{y}[/tex]