Respuesta :

Answer:

[tex]\boxed{g\approx 2.0}[/tex]

Step-by-step explanation:

First, we can solve for the altitude using the trigonometric ratio cosine:

[tex]\cos(\theta)=\dfrac{\text{adjacent}}{\text{hypotenuse}}[/tex]

[tex]\cos(49\°) = \dfrac{a}{40}[/tex]

[tex]a=40\cos(49\°)[/tex]

[tex]a\approx12.02[/tex]

Next, we can solve for g using the trigonometric ratio tangent:

[tex]\tan(\theta)=\dfrac{\text{opposite}}{\text{adjacent}}[/tex]

[tex]\tan(63\°)=\dfrac{12.02}{g}[/tex]

[tex]\dfrac{1}{\tan(63\°)}=\dfrac{g}{12.02}[/tex]

[tex]g=12.02\tan(63\°)[/tex]

[tex]g\approx 2.04[/tex]

[tex]\boxed{g\approx 2.0}[/tex]

Ver imagen Intriguing456