PLEASE THIS IS IMPORTANT HURRY!!! What is the length of the diagonal from vertex J to vertex L in the quadrilateral below? IM GIVING AWAY 100 POINTS!

PLEASE THIS IS IMPORTANT HURRY What is the length of the diagonal from vertex J to vertex L in the quadrilateral below IM GIVING AWAY 100 POINTS class=

Respuesta :

Answer: c. [tex]3\sqrt{5}[/tex]

Step-by-step explanation: step 1: calculate the horizontal and vertical distances between J and L:

7-1=6 units  3-6=3 units

step 2: use the Pythagorean theorem to find the length of the diagonal:

[tex]\sqrt{6^{2} +3^{2}[/tex]

[tex]\sqrt{36+9}[/tex]

[tex]\sqrt{45}[/tex]

[tex]3\sqrt{5}[/tex]

msm555

Answer:

C. [tex]3\sqrt{5}[/tex] units

Step-by-step explanation:

To find the length of the diagonal from vertex J to vertex L in the quadrilateral J(1,6) L(7,3), we can use the distance formula in coordinate geometry.

The distance formula between two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] in a coordinate plane is given by:

[tex]\textsf{Distance (d)}= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

For the points [tex]J(1,6)[/tex] and [tex]L(7,3)[/tex], we can calculate the distance as follows:

[tex]\textsf{d}_\textsf{JL}= \sqrt{(7 - 1)^2 + (3 - 6)^2} [/tex]

[tex]\textsf{d}_\textsf{JL}= \sqrt{(6)^2 + (-3)^2} [/tex]

[tex]\textsf{d}_\textsf{JL}= \sqrt{36 + 9} [/tex]

[tex]\textsf{d}_\textsf{JL}= \sqrt{45} [/tex]

[tex]\textsf{d}_\textsf{JL}= 3\sqrt{5} [/tex]

So, the length of the diagonal from vertex J to vertex L is:

C. [tex]3\sqrt{5}[/tex] units