To expand and simplify the expression [tex]\( 9 - 5(3x + 2) \)[/tex], we can follow these steps:
1. **Distribute the[tex]-5[/tex]**:
- Multiply [tex]-5[/tex] by each term inside the parentheses:
[tex]\( 9 - 5(3x) - 5(2) \)[/tex]
2. **Simplify**:
- Expand the expression:
[tex]\( 9 - 15x - 10 \)[/tex]
3. **Combine Like Terms**:
- Combine the constants:
[tex]\( 9 - 10 = -1 \)[/tex]
4. **Final Simplification**:
- The final simplified expression is:
[tex]\( -15x - 1 \)[/tex]
Therefore, the expanded and reduced form of [tex]\( 9 - 5(3x + 2) \)[/tex] [tex]is[/tex] [tex]\( -15x - 1 \).[/tex]