Answer:
A. [tex] \csc^2 \theta [/tex]
Step-by-step explanation:
To simplify the expression [tex] \dfrac{\cos^2 \theta}{\sin^2 \theta} + \csc \theta \sin \theta [/tex], we will use the basic trigonometric identities.
First, let's rewrite [tex] \csc \theta [/tex] in terms of sine:
[tex] \csc \theta = \dfrac{1}{\sin \theta} [/tex]
Now, we rewrite the expression:
[tex] \dfrac{\cos^2 \theta}{\sin^2 \theta} + \csc \theta \sin \theta = \dfrac{\cos^2 \theta}{\sin^2 \theta} + \dfrac{1}{\sin \theta} \cdot \sin \theta [/tex]
Using the fact that [tex] \sin \theta \cdot \csc \theta = 1 [/tex], we have:
[tex] \dfrac{\cos^2 \theta}{\sin^2 \theta} + 1 [/tex]
Now, we can express [tex] \dfrac{\cos^2 \theta}{\sin^2 \theta} [/tex] using the Pythagorean identity [tex] \cos^2 \theta = 1 - \sin^2 \theta [/tex]:
[tex] \dfrac{1 - \sin^2 \theta}{\sin^2 \theta} + 1 [/tex]
Now, we can simplify:
[tex] \dfrac{1}{\sin^2 \theta} - \dfrac{\sin^2 \theta}{\sin^2 \theta} + 1 [/tex]
[tex] \csc^2 \theta - 1 + 1 [/tex]
[tex] \csc^2 \theta [/tex]
So, the simplified expression is [tex] \csc^2 \theta [/tex]. Therefore, the answer is:
A. [tex] \csc^2 \theta [/tex]