Respuesta :

Answer: [tex]\(-\frac{1}{ab}\)[/tex]

Step-by-step explanation:

1. Start with the original expression [tex]\(\frac{1}{b^2 - ab} - \frac{1}{ab - a^2}\)[/tex].

2. Notice that both denominators have common terms involving \(a\) and [tex]\(b\)[/tex]. Factor out [tex]\(-a\)[/tex] from the second denominator to make the terms more comparable:

  [tex]\[ \frac{1}{b^2 - ab} - \frac{1}{ab - a^2} = \frac{1}{b^2 - ab} - \frac{1}{a(b - a)} \][/tex]

3. Next, factor [tex]\(b\)[/tex] from the first denominator:

 [tex]\[ \frac{1}{b(b - a)} - \frac{1}{a(b - a)} \][/tex]

4. Now, both fractions have a common denominator, \(a(b - a)\). Combine the fractions by subtracting the numerators:

 [tex]\[ \frac{a - b}{ab(b - a)} \][/tex]

5. Simplify the numerator [tex]\(a - b\) to \(-b + a\) or \(-1(b - a)\)[/tex], which allows us to cancel out the \((b - a)\) term in the numerator and denominator:

  [tex]\[ \frac{-1(b - a)}{ab(b - a)} = \frac{-1}{ab} \][/tex]

6. We are left with the simplified expression:

  [tex]\[ -\frac{1}{ab} \][/tex]