can anyone pls help me? tyy
directions: use the Law of Sines to solve the triangle. Round your answers to two decimal places.​

can anyone pls help me tyydirections use the Law of Sines to solve the triangle Round your answers to two decimal places class=

Respuesta :

Answer:

6) B = 45.79°,  C = 74.21°,  b = 7.45

7) B = 60.9°,  b = 19.32,  c = 6.36

8) B = 101.1°,  a = 1.35,  b = 3.23

Step-by-step explanation:

The Law of Sines states that in any triangle, the ratio of the length of a side to the sine of its opposite angle is constant, and this ratio is equal for all three sides.

[tex]\boxed{\begin{array}{l}\underline{\textsf{Law of Sines}} \\\\\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\\\\\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\\\\\textsf{where:}\\\phantom{ww}\bullet \;\textsf{$A, B$ and $C$ are the angles.}\\\phantom{ww}\bullet\;\textsf{$a, b$ and $c$ are the sides opposite the angles.}\end{array}}[/tex]

To solve a triangle using the Law of Sines, substitute the given information into the appropriate equation derived from the Law of Sines to find the unknown angles and side lengths.

[tex]\hrulefill[/tex]

Question 6

Given:

  • A = 60°
  • a = 9
  • c = 10

Substitute the values of A, a and c into the equation and solve for angle C:

[tex]\dfrac{\sin 60^{\circ}}{9}=\dfrac{\sin C}{10}\\\\\\\sin C=\dfrac{10\sin 60^{\circ}}{9}\\\\\\C=\sin^{-1}\left(\dfrac{10\sin 60^{\circ}}{9}\right)\\\\\\C=74.20683095...^{\circ}\\\\\\C=74.21^{\circ}\;\sf (2\;d.p.)[/tex]

Angles in a triangle sum to 180°. Therefore:

[tex]B = 180^{\circ}-A-C\\\\B = 180^{\circ}-60^{\circ}-74.20683095...^{\circ}\\\\B=45.793169048...^{\circ}\\\\B=45.79^{\circ}\;\sf (2\;d.p.)[/tex]

Use the Law of Sines again to find the length of side b:

[tex]\dfrac{9}{\sin 60^{\circ}}=\dfrac{b}{\sin (45.793169048...^{\circ})}\\\\\\b=\dfrac{9\sin (45.793169048...^{\circ})}{\sin 60^{\circ}}\\\\\\b=7.44948974278...\\\\\\b=7.45\;\sf (2\;d.p.)[/tex]

[tex]\hrulefill[/tex]

Question 7

Given:

  • A = 102.4°
  • C = 16.7°
  • a = 21.6

Angles in a triangle sum to 180°. Therefore:

[tex]B = 180^{\circ}-A-C\\\\B = 180^{\circ}-102.4^{\circ}-16.7^{\circ}\\\\B=60.9^{\circ}[/tex]

Substitute the values of A, B and a into the Law of Sines equation and solve for side length b:

[tex]\dfrac{21.6}{\sin 102.4^{\circ}}=\dfrac{b}{\sin 60.9^{\circ}}\\\\\\b=\dfrac{21.6\sin 60.9^{\circ}}{\sin 102.4^{\circ}}\\\\\\b=19.324271238...\\\\\\b=19.32\;\sf (2\;d.p.)[/tex]

Substitute the values of A, C and a into the Law of Sines equation and solve for side length c:

[tex]\dfrac{21.6}{\sin 102.4^{\circ}}=\dfrac{c}{\sin 16.7^{\circ}}\\\\\\c=\dfrac{21.6\sin 16.7^{\circ}}{\sin 102.4^{\circ}}\\\\\\c=6.35524051...\\\\\\c=6.36\;\sf (2\;d.p.)[/tex]

[tex]\hrulefill[/tex]

Question 8

Given:

  • A = 24.3°
  • C = 54.6°
  • c = 2.68

Angles in a triangle sum to 180°. Therefore:

[tex]B = 180^{\circ}-A-C\\\\B = 180^{\circ}-24.3^{\circ}-54.6^{\circ}\\\\B = 101.1^{\circ}[/tex]

Substitute the values of A, C, and c into the Law of Sines equation and solve for side length a:

[tex]\dfrac{a}{\sin 24.3^{\circ}}=\dfrac{2.68}{\sin 54.6^{\circ}}\\\\\\a=\dfrac{2.68\sin 24.3^{\circ}}{\sin 54.6^{\circ}}\\\\\\a=1.352988435...\\\\\\a=1.35\;\sf (2\;d.p.)[/tex]

Substitute the values of B, C and c into the Law of Sines equation and solve for side length b:

[tex]\dfrac{b}{\sin 101.1^{\circ}}=\dfrac{2.68}{\sin 54.6^{\circ}}\\\\\\b=\dfrac{2.68\sin 101.1^{\circ}}{\sin 54.6^{\circ}}\\\\\\b=3.226321508...\\\\\\b=3.23\; \sf (2\;d.p.)[/tex]