Alicia has 7 paintings she wants to hang side by side on her wall.
(a) In how many ways can she arrange all 7 paintings? Show your work.
(b) If she only wants to display 4 of the paintings, in how many ways can she choose the paintings she wishes to display? Show your work. (c) In how many ways can she arrange 4 out of the 7 paintings? Show your work.
2. The table shows the number of touchdowns Luis scored during his football games.
Touchdowns scored (X) 0 1 2 3 Number of games (f) 6 10 7 5 (a) Create a probability distribution table. Show your work.
(b) What is the probability of Luis scoring 2 touchdowns?
(c) What is the probability of Luis scoring more than 1 touchdown?
(d) What is the estimated value of the number of touchdowns Luis scores? Show your work.

Respuesta :

Answer:

1a. 5040

1b. 35

1c. 840

2a. see below

2b. [tex]\frac{1}{4}[/tex]

2c. [tex]\frac{3}{7}[/tex]

2d. 1.39

Step-by-step explanation:

1.

(a) Arranging 7 pictures → order is significant, therefore we use the Permutation Probability.

[tex]\boxed{_nP_r=\frac{n!}{(n-r)!} }[/tex]

n = total number of subjects

r = total number of selected subjects

Given:

n = 7

r = 7

[tex]\displaystyle{_7P_7=\frac{7!}{(7-7)!} }[/tex]

      [tex]=7![/tex]

      [tex]=5040[/tex]

(b) Picking 4 paintings out of 7 → order is not significant, so we use the Combination Probability.

[tex]\boxed{_nC_r=\frac{n!}{r!(n-r)!} }[/tex]

Given:

n = 7

r = 4

[tex]\displaystyle_7P_4=\frac{7!}{4!(7-4)!}[/tex]

      [tex]\displaystyle=\frac{7!}{4!\ 3!} }[/tex]

      [tex]\displaystyle=\frac{7\times6\times5}{3!} }[/tex]

      [tex]\displaystyle=\frac{7\times6\times5}{3\times2\times1}[/tex]

      [tex]=35[/tex]

(c) Arranging 4 out of 7 painting → order is significant → Permutation Probability.

Given:

n = 7

r = 4

[tex]\displaystyle{_7P_4=\frac{7!}{(7-4)!} }[/tex]

      [tex]\displaystyle=\frac{7!}{3!}[/tex]

      [tex]=7\times6\times5\times4[/tex]

      [tex]=840[/tex]

**Notes: using the question (b) data → each 1 of the 35 probabilities has [tex]_4P_4[/tex] arrangements. Then, the total arrangement will be: [tex]35\times _4P_4=35\times 4!=840[/tex]

2.

(a)

∑frequency = 6 + 10 + 7 + 5

                   = 28

[tex]P(X=0)=\frac{6}{28} =\frac{3}{14}[/tex]

[tex]P(X=1)=\frac{10}{28} =\frac{5}{14}[/tex]

[tex]P(X=2)=\frac{7}{28} =\frac{1}{4}[/tex]

[tex]P(X=3)=\frac{5}{28}[/tex]

Probability Distribution Table

[tex]\begin{array}{c|c|c|c|c}X & 0 & 1 & 2 & 3\\\cline{1-5}P(X) & \frac{3}{14} &\frac{5}{14} &\frac{1}{4} &\frac{5}{28} \end{array}[/tex]

(b) P(X=2) = [tex]\frac{1}{4}[/tex]

(c) P(X>1) = P(X=2) + P(X=3)

               [tex]=\frac{1}{4} +\frac{5}{28}[/tex]

               [tex]=\frac{3}{7}[/tex]

(d) Estimated value = Expectation (E(X))

[tex]\boxed{E(X)=\Sigma x_i\cdot p_i}[/tex]

[tex]E(X) =0\cdot\frac{3}{14} +1\cdot\frac{5}{14} +2\cdot\frac{1}{4} +3\cdot\frac{5}{28}[/tex]

         [tex]=\frac{39}{28}[/tex]

         [tex]\approx 1.39[/tex]