Respuesta :

sin of 120 degrees, on a unit circle, would have coordinates of (-1/2, √3/2). Since the sin is the y coordinate, the answer is √3/2, or C.

Answer:

[tex]sin120^{\circ}= \frac{\sqrt{3}}{2}[/tex]

Option (C) is correct.

Step-by-step explanation:

By using the trigonometric identity

[tex]sin\theta = cos (90^{\circ}- \theta)[/tex]

As given in the question.

[tex]\theta = 120^{\circ}[/tex]

Put in the above

[tex]sin120^{\circ} = cos (90^{\circ}- 120^{\circ})[/tex]

[tex]sin120^{\circ} = cos(-30^{\circ})[/tex]

[tex]As\ cosine\ is\ an\ even\ function\ i.e\ cos (-\theta) = cos (\theta).[/tex]

i.e

[tex]cos30^{\circ} = cos(-30^{\circ})[/tex]

[tex]use\ the\ above\ result\ in\ sin120^{\circ} = cos(-30^{\circ})[/tex]

Thus

[tex]sin120^{\circ} = cos(30^{\circ})[/tex]

As

[tex]cos30^{\circ}= \frac{\sqrt{3}}{2}[/tex]

Therefore

[tex]sin120^{\circ}= \frac{\sqrt{3}}{2}[/tex]

Option (C) is correct.