Respuesta :
It's geometric series: [/tex] S_{n} [/tex]=[tex] \frac{1- 5^{n} }{1-5} [/tex]
[tex] S_{\infty} [/tex]=[tex] \frac{1}{-4} [/tex].
[tex] S_{\infty} [/tex]=[tex] \frac{1}{-4} [/tex].
Answer:
[tex]\frac{125}{4}[/tex]
Step-by-step explanation:
evaluate the infinite series
25+5+1+ ...
Given series is geometric
Sum of geometric series formula is
[tex]S= \frac{a}{1-r}[/tex]
Where 'a' is the first term
'r' is the common ratio
to get common ratio divide second term by first term
5/25= 1/5
so a= 25 and r= 1/5
[tex]S=\frac{25}{1-\frac{1}{5}}[/tex]
[tex]S=\frac{25}{\frac{4}{5}}[/tex]
[tex]S=25*\frac{5}{4}[/tex]
[tex]S=\frac{125}{4}[/tex]