What values of c and d make the equation true? 3√162x^cy^5=3x^2y(√6y^d)

Answer:- c=6 ; d=2
Explanation:-
Given equation:-[tex]\sqrt[3]{162x^cy^5}=3x^2y(\sqrt[3]{6y^d})[/tex]
[tex]\\\\\text{Taking cube on both sides, we get}\\\\\Rightarrow(\sqrt[3]{162x^cy^5})^3=(3x^2y(\sqrt[3]{6y^d}))^3\\\\\Rightarrow162x^cy^5=(3x^2y)^3(\sqrt[3]{6y^d})^3\\\\\Rightarrow162x^cy^5=27x^{2\times3}y^3(6y^d)......[(a^m)^n=a^{mn}]\\\\\Rightarrow162x^cy^5=162x^6y^{3+d}.........[a^{m}\times\ a^n=a^{m+n}]\\\\\text{Compare the power of corresponding variables, we get}\\\\\Rightarrow\ c=6\ ;\ 3+d=5\Rightarrow\ d=5-3=2[/tex]
Thus, the values of c=6 and d=2 make the given equation true.