Which expression is equivalent to 3√32x^8y^10?

Answer:
Third option is correct.
Step-by-step explanation:
The given expression is,
[tex]\sqrt[3]{32x^8y^{10}}[/tex]
The expression can be written as,
[tex]\sqrt[3]{(2)^5x^8y^{10}}[/tex]
Use exponent rule [tex]x^{m+n}=x^m.x^n[/tex],
[tex]\sqrt[3]{(2)^{3+2}x^{6+2}y^{9+1}}[/tex]
[tex]\sqrt[3]{2^3\times 2^2\times x^6\times x^2\times y^9\times y}[/tex]
[tex]\sqrt[3]{2^3\times (x^2)^3\times (y^3)^3\times 2^2\times x^2\times y}[/tex]
[tex]\sqrt[3]{(2x^2y^3)^3\times 2^2\times x^2\times y}[/tex]
[tex]2x^2y^3\sqrt[3]{2^2\times x^2\times y}[/tex]
[tex]2x^2y^3\sqrt[3]{4x^2y}[/tex]
Therefore the third option is correct.