Which expression is equivalent to √128x^5y^6/2x^7y^5? Assume x>0 and y>0.

Answer:
The correct option is D.
Step-by-step explanation:
The given expression is,
[tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex]
[tex]\sqrt{\frac{64x^5y^6}{x^7y^5}}[/tex]
Use exponent rule [tex]\frac{a^m}{a^n}=a^{m-n}[/tex],
[tex]\sqrt{64x^{5-7}y^{6-5}}[/tex]
[tex]\sqrt{64x^{-2}y^{6-5}}[/tex]
Use exponent rule [tex]a^{-n}=\frac{1}{a^n}[/tex],
[tex]\sqrt{64\times \frac{1}{x^2}\times y}[/tex]
[tex]\sqrt{(\frac{8}{x})^2\times y}[/tex]
[tex]\frac{8\sqrt{y}}{x}[/tex]
Therefore option D is correct.