Respuesta :

[tex]\bf \begin{array}{ccllll} dollars&hours\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 12&1\\ x&7.5 \end{array}\implies \cfrac{12}{x}=\cfrac{1}{7.5}[/tex]

Answer:

[tex]\frac{\$12}{\text{1 hour}}=\frac{\$x}{\text{7.5 hour}}[/tex]

[tex]x=\$90[/tex]

Step-by-step explanation:

We have been given that Rosa earns $12 per hour. We can represent this information as:

[tex]\frac{\$12}{\text{1 hour}}[/tex]

We are also told that in 7.5 hours, she will earn x dollars. We can represent this information as:

[tex]\frac{x}{\text{7.5 hour}}[/tex]

Since proportion states that two quantities are equal, so we can set a proportion for our given quantities as:

[tex]\frac{\$12}{\text{1 hour}}=\frac{x}{\text{7.5 hour}}[/tex]

Therefore, the proportion [tex]\frac{\$12}{\text{1 hour}}=\frac{\$x}{\text{7.5 hour}}[/tex] can be used to solve the problem.

Let us solve for x.

[tex]\frac{\$12}{\text{1 hour}}*\text{7.5 hour}=\frac{x}{\text{7.5 hour}}*\text{7.5 hour}[/tex]

[tex]\$12*7.5=x[/tex]

[tex]\$90=x[/tex]

Therefore, the value of x is $90.