Respuesta :
[tex]\bf \begin{array}{ccllll}
dollars&hours\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
12&1\\
x&7.5
\end{array}\implies \cfrac{12}{x}=\cfrac{1}{7.5}[/tex]
Answer:
[tex]\frac{\$12}{\text{1 hour}}=\frac{\$x}{\text{7.5 hour}}[/tex]
[tex]x=\$90[/tex]
Step-by-step explanation:
We have been given that Rosa earns $12 per hour. We can represent this information as:
[tex]\frac{\$12}{\text{1 hour}}[/tex]
We are also told that in 7.5 hours, she will earn x dollars. We can represent this information as:
[tex]\frac{x}{\text{7.5 hour}}[/tex]
Since proportion states that two quantities are equal, so we can set a proportion for our given quantities as:
[tex]\frac{\$12}{\text{1 hour}}=\frac{x}{\text{7.5 hour}}[/tex]
Therefore, the proportion [tex]\frac{\$12}{\text{1 hour}}=\frac{\$x}{\text{7.5 hour}}[/tex] can be used to solve the problem.
Let us solve for x.
[tex]\frac{\$12}{\text{1 hour}}*\text{7.5 hour}=\frac{x}{\text{7.5 hour}}*\text{7.5 hour}[/tex]
[tex]\$12*7.5=x[/tex]
[tex]\$90=x[/tex]
Therefore, the value of x is $90.