Answer:
The answer is the option D
[tex]f(6)=g(6)[/tex] and [tex]f(18)=g(18)[/tex]
Step-by-step explanation:
we have
[tex]f\left(x\right)=\left|x-9\right|[/tex]
[tex]g(x)=0.5x[/tex]
we know that
The solution of the system of equations is the intersection point both graphs
Using a graphing tool
see the attached figure
The solution are the points [tex](6,3)[/tex] and [tex](18,9)[/tex]
therefore
The solution of the equation [tex]\left|x-9\right|=0.5x[/tex] are
[tex]x=6, x=18[/tex]
so
For [tex]x=6[/tex]
[tex]f\left(6\right)=\left|6-9\right|=3[/tex]
[tex]g(6)=0.5(6)=3[/tex]
[tex]f(6)=g(6)[/tex]
For [tex]x=18[/tex]
[tex]f\left(18\right)=\left|18-9\right|=9[/tex]
[tex]g(18)=0.5(18)=9[/tex]
[tex]f(18)=g(18)[/tex]
therefore
[tex]f(6)=g(6)[/tex] and [tex]f(18)=g(18)[/tex] because the intersection points are common points for both graphs