Respuesta :

The main identities we use are:

i) [tex]sin(a+b)=sin(a)cos(b)+sin(b)cos(a)[/tex]

ii) [tex]sin(2a)=2sin(a)sin(b)[/tex]

iii) [tex]cos(2x)= cos^{2}(x)-sin^{2}(x) [/tex]


Thus,

sin (3x)=sin(2x+x)=sin(2x)cos(x) + cos(2x)sin(x)

[tex]=2sin(x)cos(x)cos(x)+[cos^{2}(x)-sin^{2}(x)]sin(x)[/tex]

[tex]=2sin(x)cos^{2} (x)+sin(x)cos^{2}(x)-sin^{3}(x)[/tex]

[tex]=3sin(x)cos^{2}(x)-sin^{3}(x)[/tex]


Answer: [tex]3sin(x)cos^{2}(x)-sin^{3}(x)[/tex]