[tex]\bf \begin{array}{llll}
term&value\\
-----&-----\\
a_4&9\\
a_5&9+d\\
a_6&(9+d)+d\\
&9+2d\\
a_7&(9+2d)+d\\
&9+3d=\underline{18}
\end{array}\\\\
-------------------------------\\\\
9+3d=18\implies 3d=9\implies d=\cfrac{9}{3}\implies \boxed{d=3}[/tex]
[tex]\bf n^{th}\textit{ term of an arithmetic sequence}\\\\
a_n=a_1+(n-1)d\qquad
\begin{cases}
n=n^{th}\ term\\
a_1=\textit{first term's value}\\
d=\textit{common difference}\\
----------\\
n=7\\
d=3
\end{cases}
\\\\\\
a_7=a_1+(7-1)d\implies 18=a_1+(7-1)3\implies 18=a_1+18
\\\\\\
18-18=a_1\implies \boxed{0=a_1}[/tex]