Respuesta :

The solution of log(4x-6)16=4 is x = 2.

Answer:

Option 2nd is correct

x =2

Step-by-step explanation:

Using logarithmic rules:

if [tex]\log_a b = x[/tex], then [tex]a^x = b[/tex]

Given the equation:

[tex]\log_{4x-6} 16 = 4[/tex]

Apply the rules we have;

[tex]16 = (4x-6)^4[/tex]

We can write 16 as:

[tex]16 = 2 \cdot 2 \cdot 2 \cdot 2 = 2^4[/tex]

then;

[tex]2^4 = (4x-6)^4[/tex]

On comparing both sides we have;

[tex]2 = 4x-6[/tex]

Add 6 to both sides we have;

[tex]8 = 4x[/tex]

Divide by 4 to both sides we have;

2 = x

or

x = 2

Therefore, the value of x is, 2