Respuesta :
[tex]\bf 2.16161616\overline{16}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \textit{let's say }x=2.16161616\overline{16}\impliedby \begin{array}{llll} \textit{now, let's multiply it by a power}\\ \textit{of 10, so the repetitive part is at}\\ \textit{the left-side, thus 100} \end{array} \\\\\\ \begin{array}{llll} 100\cdot 2.16161616\overline{16}\implies 216.161616\overline{16}&\implies 214+2.161616\overline{16}\\ \qquad \qquad \uparrow &\qquad \qquad \uparrow \\ \qquad 100\cdot x&\qquad \quad 214+x \end{array}[/tex]
[tex]\bf 100x=214+x\implies 100x-x=214\implies 99x=214 \\\\\\ x=\cfrac{214}{99}\implies x=2\frac{16}{99}[/tex]
[tex]\bf \textit{let's say }x=2.16161616\overline{16}\impliedby \begin{array}{llll} \textit{now, let's multiply it by a power}\\ \textit{of 10, so the repetitive part is at}\\ \textit{the left-side, thus 100} \end{array} \\\\\\ \begin{array}{llll} 100\cdot 2.16161616\overline{16}\implies 216.161616\overline{16}&\implies 214+2.161616\overline{16}\\ \qquad \qquad \uparrow &\qquad \qquad \uparrow \\ \qquad 100\cdot x&\qquad \quad 214+x \end{array}[/tex]
[tex]\bf 100x=214+x\implies 100x-x=214\implies 99x=214 \\\\\\ x=\cfrac{214}{99}\implies x=2\frac{16}{99}[/tex]
We have that the cost as a fraction and as a mixed number
[tex]\frac{54}{25}\\\\2\frac{4}{25}[/tex]
From the question we are told that
3.242424... as a mixed number.
Generally the equation for the Mixed number is mathematically given as
a\frac{b}{c}
Therefore
[tex]2.161616=\frac{54}{25}[/tex]
Generally 3.242424... as a mixed number is
[tex]\frac{54}{25}=2\frac{4}{25}\\\\a\frac{b}{c}=2\frac{4}{25}[/tex]
For more information on this visit
https://brainly.com/question/23366835