Respuesta :

Answer:

x = 2[tex]\sqrt{2}[/tex]

Step-by-step explanation:

given the triangle is isosceles , then

the 2 legs are congruent ( equal ), both x

Using Pythagoras' identity in the right triangle

a² + b² = c²

c is the hypotenuse and a, b the legs

x² + x² = 4²

2x² = 16 ( divide both sides by 2 )

x² = 8 ( take square root of both sides )

[tex]\sqrt{x^2}[/tex] = [tex]\sqrt{8}[/tex] , that is

x = [tex]\sqrt{4(2)}[/tex] = [tex]\sqrt{4}[/tex] × [tex]\sqrt{2}[/tex] = 2[tex]\sqrt{2}[/tex]