The values of [tex]\( i \)[/tex] and [tex]\( j \)[/tex] in the matrix \[tex]( B = 4 \)[/tex] (where [tex]\( b_{ij} = -1 \))[/tex] are [tex]\( i = 2 \)[/tex] and [tex]\( j = 3 \)[/tex]
In the given matrix [tex]\( B = 4 \)[/tex], the notation [tex]\( b_{ij} \)[/tex] represents the element in the [tex]\( i \)-th[/tex] row and [tex]\( j \)-th[/tex] column. We are given that [tex]\( b_{ij} = -1 \)[/tex]. To find [tex]\( i \)[/tex] and [tex]\( j \)[/tex], we need to identify the position where [tex]\( b_{ij} = -1 \)[/tex].
Let's denote the matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{bmatrix} 2 & 4 & 5 \\ -1 & 3 & 1 \\ 0 & 6 & 4 \end{bmatrix} \][/tex]
Now, comparing the matrix elements with the given condition [tex]\( b_{ij} = -1 \)[/tex], we find that [tex]\( b_{23} = -1 \)[/tex]. Therefore, [tex]\( i = 2 \)[/tex] and [tex]\( j = 3 \)[/tex].
In summary, the values of [tex]\( i \)[/tex] and [tex]\( j \)[/tex] in the matrix [tex]\( B = 4 \)[/tex] are [tex]\( i = 2 \)[/tex] and [tex]\( j = 3 \)[/tex]. This means that the element in the second row and third column of matrix [tex]\( B \)[/tex] is equal to [tex]-1[/tex].