Respuesta :

Step-by-step explanation:

[tex]\sqrt[3]{3}[/tex] × [tex]\sqrt[2]{3}[/tex]

[tex]3^{\frac{1}{3} }[/tex] × [tex]3^{\frac{1}{2} }[/tex]     [[tex]\sqrt[a]{x^{n} }=x^{\frac{n}{a} }[/tex]]

[tex]3^{\frac{1}{3}+\frac{1}{2}}[/tex]        [[tex]a^{n}[/tex]×[tex]a^m=a^{m+n}[/tex]]

[tex]3^{\frac{5}{6} }[/tex]

[tex]\sqrt[6]{3^5}[/tex]

[tex]\sqrt[6]{243}[/tex]

∴[tex]\sqrt[3]{3}[/tex] × [tex]\sqrt[2]{3}[/tex]=[tex]\sqrt[6]{243}[/tex]

Answer:

See below for proof.

Step-by-step explanation:

Given radical expression:

[tex]\left(\sqrt[3]{3}\right)\left(\sqrt{3}\right)[/tex]

To express the given radical expression as ⁶√(243), we can use the laws of exponents.

[tex]\boxed{\begin{array}{rl}\underline{\sf Laws\;of\;Exponents}\\\\\sf Product:&a^m \times a^n=a^{m+n}\\\\\sf Power\;of\;a\;Power:&(a^m)^n=a^{mn}\\\\\sf Fractional\;Exponent:&a^{\frac{1}{n}}=\sqrt[n]{a}\\\\\end{array}}[/tex]

Apply the fractional exponent rule:

[tex]3^{\frac13}\cdot 3^{\frac12}[/tex]

Apply the product exponent rule, which states that when two terms with the same base are multiplied, we add their exponents:

[tex]3^{\frac13+\frac12}[/tex]

Simplify the exponent:

[tex]3^{\frac56}[/tex]

Rewrite the exponent as the product of 5 and ¹/₆:

[tex]3^{5\cdot {\frac16}}[/tex]

Apply the power of a power exponent rule:

[tex]\left(3^5\right)^{\frac16}[/tex]

Evaluate 3⁵:

[tex]\left(243\right)^{\frac16}[/tex]

Apply the fractional exponent rule:

[tex]\sqrt[6]{243}[/tex]