URGENT 9th grade geo/algebra I've been working on these types of problems for the last hour and can't understand them this is my last resort

URGENT 9th grade geoalgebra Ive been working on these types of problems for the last hour and cant understand them this is my last resort class=
URGENT 9th grade geoalgebra Ive been working on these types of problems for the last hour and cant understand them this is my last resort class=

Respuesta :

Answer:

x³/2

Step-by-step explanation:

Factor the top and bottom completely

x³(x + 2)        ·    2(x+1)(x-1)

4(x+2)(x-1)               (x+1)

Cancel out any matches on the top and bottom

x³/2

Answer:

[tex]\textsf{1)} \quad \dfrac{x}{2}[/tex]

[tex]\textsf{2)}\quad \dfrac{2}{3}[/tex]

Step-by-step explanation:

Question 1

Given expression:

[tex]\dfrac{x^4+2x^3}{4x^4+4x^3-8x^2}\cdot \dfrac{2x^2-2}{x+1}[/tex]

To simplify the given expression, begin by factoring the numerators and denominators, where applicable.

To factor the numerator of the first fraction, factor out the common term x³:

[tex]x^4+2x^3=x^3(x+2)[/tex]

To factor the denominator of the first fraction, begin by factoring out the common term 4x², then factor the quadratic inside the parentheses:

[tex]\begin{aligned}4x^4+4x^3-8x^2&=4x^2(x^2+x-2)\\&=4x^2(x^2+2x-x-2)\\&=4x^2(x(x+2)-1(x+2))\\&=4x^2(x-1)(x+2)\end{aligned}[/tex]

To factor the numerator of the second fraction, begin by factoring out the common term 2, then factor the quadratic inside the parentheses:

[tex]\begin{aligned}2x^2-2&=2(x^2-1)\\&=2(x^2+x-x-1)\\&=2(x(x+1)-1(x+1))\\&=2(x+1)(x-1)\end{aligned}[/tex]

Therefore, the expression with factored numerators and denominators is:

[tex]\dfrac{x^3(x+2)}{4x^2(x-1)(x+2)}\cdot \dfrac{2(x+1)(x-1)}{x+1}[/tex]

Cancel the common factors of each fraction:

[tex]\dfrac{x}{4(x-1)}\cdot 2(x-1)[/tex]

Cross-cancel the common factor (x - 2):

[tex]\dfrac{x}{4} \cdot 2[/tex]

[tex]\dfrac{2x}{4}[/tex]

Cancel the common factor 2:

[tex]\dfrac{x}{2}[/tex]

Therefore:

[tex]\dfrac{x^4+2x^3}{4x^4+4x^3-8x^2}\cdot \dfrac{2x^2-2}{x+1}=\boxed{\dfrac{x}{2}}[/tex]

[tex]\hrulefill[/tex]

Question 2

Given expression:

[tex]\dfrac{x+10}{x^2+20x+100}\cdot \dfrac{6x}{3x}\cdot \dfrac{x^2+3x-70}{3x-21}[/tex]

To simplify the given expression, begin by factoring the numerators and denominators, where applicable.

Factor the denominator of the first fraction:

[tex]\begin{aligned}x^2+20x+100&=x^2+10x+10x+100\\&=x(x+10)+10(x+10)\\&=(x+10)(x+10)\end{aligned}[/tex]

Factor the numerator of the third fraction:

[tex]\begin{aligned}x^2+3x-70&=x^2+10x-7x-70\\&=x(x+10)-7(x+10)\\&=(x+10)(x-7)\end{aligned}[/tex]

Factor the denominator of the third fraction:

[tex]3x-21=3(x-7)[/tex]

Therefore, the expression with factored numerators and denominators is:

[tex]\dfrac{x+10}{(x+10)(x+10)}\cdot \dfrac{6x}{3x}\cdot \dfrac{(x+10)(x-7)}{3(x-7)}[/tex]

Cancel the common factors of each fraction:

[tex]\dfrac{1}{x+10}\cdot 2\cdot \dfrac{x+10}{3}[/tex]

Cross-cancel the common factor (x + 10):

[tex]2 \cdot \dfrac{1}{3}[/tex]

[tex]\dfrac{2}{3}[/tex]

Therefore:

[tex]\dfrac{x+10}{x^2+20x+100}\cdot \dfrac{6x}{3x}\cdot \dfrac{x^2+3x-70}{3x-21}=\boxed{\dfrac{2}{3}}[/tex]