Answer:
[tex]3a^{(6-2)}[/tex]
Step-by-step explanation:
To simplify the expression [tex]\frac{6a^{6}}{2a^{2}}[/tex], first divide the constant term.
[tex]\frac{6a^{6}}{2a^{2}} = \frac{3a^{6}}{a^{2}}[/tex]
Then use the law of exponents [tex]\frac{a^{b}}{a^{c}} = a^{(b-c)}[/tex]
[tex]\frac{3a^{6}}{a^{2}} = 3a^{(6-2)}[/tex]
The answer can be further simplified but this corresponds to the options given. Further simplification would be,
[tex]3a^{(6-2)} = 3a^{4}[/tex]