Respuesta :

Answer:

[tex] A = 168.9~cm^2 [/tex]

Step-by-step explanation:

360° - 65° = 295°

[tex] A = \dfrac{n}{360^{\circ}} \times \pi r^2 [/tex]

[tex] A = \dfrac{295^{\circ}}{360^{\circ}} \times \pi (8.1~cm)^2 [/tex]

[tex] A = 168.9~cm^2 [/tex]

Answer:

168.9 cm²

Step-by-step explanation:

To find the area of the shaded region, we can use the formula for the area of a sector:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a sector}}\\\\A=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the radius.}\\\phantom{ww}\bullet\;\;\textsf{$\theta$ is the angle measured in degrees.}\end{array}}[/tex]

Angles around a point sum to 360°. Therefore, the central angle (θ) of the shaded area can be found by subtracting the central angle of the unshaded area from 360°:

[tex]\theta=360^{\circ}-65^{\circ}\\\\\theta=295^{\circ}[/tex]

Therefore, the values are:

  • r = 8.1 cm
  • θ = 295°

Substitute the values into the formula and solve for A:

[tex]A=\left(\dfrac{295^{\circ}}{360^{\circ}}\right) \cdot\pi \cdot 8.1^2[/tex]

[tex]A=\dfrac{59}{72} \cdot \pi \cdot 65.61[/tex]

[tex]A=53.76375\pi[/tex]

[tex]A=168.903802...[/tex]

[tex]A=168.9\; \sf cm^2\;(nearest\;tenth)[/tex]

Therefore, the area of the shaded region is 168.9 cm², rounded to the nearest tenth.