Respuesta :
[tex]\bf \qquad \qquad \textit{Future Value of an ordinary annuity}\\
\left. \qquad \qquad \right.(\textit{payments at the end of the period})
\\\\
A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right][/tex]
[tex]\bf \qquad \begin{cases} A= \begin{array}{llll} \textit{accumulated amount}\\ \end{array} & \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\to &7500\\ r=rate\to 12\%\to \frac{12}{100}\to &0.12\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four times} \end{array}\to &4\\ t=years\to &3 \end{cases} \\\\\\ A=7500\left[ \cfrac{\left( 1+\frac{0.12}{4} \right)^{4\cdot 3}-1}{\frac{0.12}{4}} \right][/tex]
[tex]\bf \qquad \begin{cases} A= \begin{array}{llll} \textit{accumulated amount}\\ \end{array} & \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\to &7500\\ r=rate\to 12\%\to \frac{12}{100}\to &0.12\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four times} \end{array}\to &4\\ t=years\to &3 \end{cases} \\\\\\ A=7500\left[ \cfrac{\left( 1+\frac{0.12}{4} \right)^{4\cdot 3}-1}{\frac{0.12}{4}} \right][/tex]
Answer:
$180,997.50.
Step-by-step explanation:
1. On TABLE 14-1 Future Value of $1.00 Ordinary Annuity, select the periods row corresponding to the number of interest periods.
2. Select the rate-per-period column corresponding to the period interest rate.
3. Locate the value in the cell where the periods row intersects the rate-per-period column.
4. Multiply the annuity payment by the table value from step 3.
Future value = annuity payment × table value
FV = $7500.00 * 24.133 = $180,997.50
