so.... the account is at 0 at the beginning, after the 1st payment made to the account, the only balance it'd have, is the first payment amount, so namely, what's the monthly amortized payment
[tex]\bf \qquad \qquad \textit{Amortized Loan Value}
\\\\
pymt=P\left[ \cfrac{\frac{r}{n}}{1-\left( 1+ \frac{r}{n}\right)^{-nt}} \right][/tex]
[tex]\bf \qquad
\begin{cases}
P=
\begin{array}{llll}
\textit{original amount deposited}\\
\end{array}\to &
\begin{array}{llll}
148,000
\end{array}\\
pymt=\textit{periodic payments}\\
r=rate\to 4.9\%\to \frac{4.9}{100}\to &0.049\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{payments are monthly, thus}
\end{array}\to &12\\
t=years\to &20
\end{cases}
\\\\\\
pymt=148000\left[ \cfrac{\frac{0.049}{12}}{1-\left( 1+ \frac{0.049}{12}\right)^{-12\cdot 20}} \right][/tex]