Respuesta :
[tex]L = \cfrac{ \pi rn}{180} \ \ \ \ \ \ \ [\text{L=arc length, r=radius, n=central angle,} \ \pi \approx3.14 ] \\ \\ \\ L = \cfrac{ 3.14*6*70}{180} \approx7.33 \ in[/tex]
Answer:
Option C. [tex]\frac{7}{3}\pi \ in[/tex]
Step-by-step explanation:
we know that
The circumference of a circle is equal to
[tex]C=2\pi r[/tex]
In this problem we have
[tex]r=6\ in[/tex]
substitute
[tex]C=2\pi (6)=12\pi\ in[/tex]
Remember that
[tex]360\°[/tex] subtends the complete arc of length [tex]12\pi\ in[/tex]
so
by proportion
Find the arc length by an angle measuring [tex]70\°[/tex]
[tex]\frac{360}{12\pi }=\frac{70}{x}\\ \\x=12\pi *70/360\\ \\x=\frac{840}{360}\pi \\ \\x=\frac{7}{3}\pi \ in[/tex]