Respuesta :

First term, a, is 2.  Next term, -2, is the product of 2 and -1 and is -2.  Next term, 2, is the product of -2 and -1.  Thus, the first term, a, is 2 and the common ratio, r, is -1.

Answer:  For the given geometric series, the first term is [tex]a_1=2[/tex] and the common ratio is [tex]r=-1.[/tex]

Step-by-step explanation:  We are given to find the values of [tex]a_1[/tex] and [tex]r[/tex] of the following geometric series:

[tex]2-2+2-2+2-~.~.~..[/tex]

We know that

[tex]a_1[/tex] is the first term and [tex]r[/tex] is the common ratio of the given geometric series.

We can see that the first term of the given geometric series is 2.

So. we must have

[tex]a_1=2.[/tex]

Also, common ratio is found by dividing a term by its preceding term.

Therefore, the common ratio [tex]r[/tex] of the given geometric series is

[tex]r=\dfrac{-2}{2}=\dfrac{2}{-2}=~.~.~.~=-1.[/tex]

Thus, for the given geometric series, the first term is [tex]a_1=2[/tex] and the common ratio is [tex]r=-1.[/tex]