Respuesta :
[tex]\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
&({{ 0}}\quad ,&{{ d}})\quad
% (c,d)
&({{ d}}\quad ,&{{ 0}})
\end{array}
\\\\\\
% slope = m
slope = {{ m}}= \cfrac{rise}{run} \implies
\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{0-d}{d-0}\implies \cfrac{-d}{d}\implies -1[/tex]
Answer:
-1
Step-by-step explanation:
Hello,
The slope is the inclination of the line with respect to the abscissa axis, if you know two points it can be calculated using:
[tex]P1(x_{1},y_{1} )\\P2(x_{2},y_{2} )\\\\slope(m)=\frac{y_{2} -y_{1} }{x_{2}-x_{1}} \\[/tex]
Step 1
Define
[tex]P1=a(o,d),x_{1} =o, y_{1}=d \\P2=b(d,o),x_{2} =d, y_{2}=o[/tex]
Step 2
put the values into the equation
[tex]slope(m)=\frac{y_{2} -y_{1} }{x_{2}-x_{1}}\\slope(m)=\frac{o-d}{d-o}\\factorize -1\\\\slope(m)=-\frac{-o+d}{d-o}\\slope(m)=-\frac{d-o}{d-o}\\slope(m)=-1\\[/tex]
Have a great day