Respuesta :

[tex]\left(x^{ \frac{2}{5} } \right)^{ \frac{5}{6} }=x^{ \frac{2}{5}* \frac{5}{6} }=x^{ \frac{1}{3} }= \sqrt[3]{x} [/tex]

Answer:

[tex]x^{\frac{1}{3}}[/tex].

Step-by-step explanation:

We have been given an expression [tex](x^{\frac{2}{5}})^{\frac{5}{6}}[/tex]. We are asked to simplify our given expression.

Using Power Rule of exponents [tex](a^b)^c=a^{b\times c}[/tex], we can rewrite our expression as:

[tex]x^{\frac{2}{5}\times\frac{5}{6}}[/tex]

Upon simplifying our expression, we will get:

[tex]x^{\frac{10}{30}}[/tex]

[tex]x^{\frac{1}{3}}[/tex]

Therefore, the simplified form of our given expression would be [tex]x^{\frac{1}{3}}[/tex].