Respuesta :
Answer:
A. [tex]\sqrt[3]{4}[/tex] = Cube root of 4.
Step-by-step explanation:
We have been given an expression [tex]2^{\frac{2}{3}}[/tex]. We are asked to find the equivalent expression for our given expression.
Using exponent property [tex]\sqrt[n]{a^m} =a^{\frac{m}{n}[/tex], we will get,
[tex]2^{\frac{2}{3}}=\sqrt[3]{2^2}[/tex]
[tex]2^{\frac{2}{3}}=\sqrt[3]{4}[/tex]
Upon looking at our given choices, we can see that option A is the correct choice.
Answer:
Option A.
Step-by-step explanation:
The given expression is
[tex]2^{\frac{2}{3}}[/tex]
We need to find the equivalent expression of given expression.
Using the properties of exponent the given expression can we written as
[tex](2^2)^{\frac{1}{3}}[/tex] [tex][\because (a^m)^n=a^{mn}][/tex]
[tex]4^{\frac{1}{3}}[/tex]
Using the another property of exponent we get
[tex]\sqrt[3]{4}[/tex] [tex][\because a^{\frac{1}{n}}=\sqrt[n]{a}][/tex]
The expression cube root 4 is equivalent to the given expression.
Therefore, the correct option is A.