Respuesta :

Answer:

A. [tex]\sqrt[3]{4}[/tex] = Cube root of 4.

Step-by-step explanation:

We have been given an expression [tex]2^{\frac{2}{3}}[/tex]. We are asked to find the equivalent expression for our given expression.

Using exponent property [tex]\sqrt[n]{a^m} =a^{\frac{m}{n}[/tex], we will get,

[tex]2^{\frac{2}{3}}=\sqrt[3]{2^2}[/tex]

[tex]2^{\frac{2}{3}}=\sqrt[3]{4}[/tex]

Upon looking at our given choices, we can see that option A is the correct choice.

Answer:

Option A.

Step-by-step explanation:

The given expression is

[tex]2^{\frac{2}{3}}[/tex]

We need to find the equivalent expression of given expression.

Using the properties of exponent the given expression can we written as

[tex](2^2)^{\frac{1}{3}}[/tex]              [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]4^{\frac{1}{3}}[/tex]

Using the another property of exponent we get

[tex]\sqrt[3]{4}[/tex]                 [tex][\because a^{\frac{1}{n}}=\sqrt[n]{a}][/tex]

The expression cube root 4 is equivalent to the given expression.

Therefore, the correct option is A.