Respuesta :

The answer to this question is y = –3x^2, just had this on e2020 :)

we know that

the equation of a vertical parabola into vertex form is equal to

[tex]y=a(x-h)^{2} +k[/tex]

where

(h,k)-------> is the vertex of the parabola

if [tex]a > 0[/tex] -------> the parabola open upwards

if [tex]a < 0[/tex] -------> the parabola open downwards

case A) [tex]y=-3x^{2}[/tex]

[tex]a =-3[/tex]

so

[tex]a < 0[/tex] -------> the parabola open downwards

the vertex is the point [tex](0,0)[/tex] ------> is a maximum

therefore

[tex]y=-3x^{2}[/tex] open downwards

case B) [tex]y=(x-3)^{2}[/tex]

[tex]a =1[/tex]

so

[tex]a > 0[/tex] -------> the parabola open upwards

the vertex is the point [tex](3,0)[/tex] --------> is a minimum

therefore

[tex]y=(x-3)^{2}[/tex] open upwards

case C) [tex]y=x^{2}-3[/tex]

[tex]a =1[/tex]

so

[tex]a > 0[/tex] -------> the parabola open upwards

the vertex is the point [tex](0,-3)[/tex] --------> is a minimum

therefore

[tex]y=x^{2}-3[/tex] open upwards

therefore

the answer is

[tex]y=-3x^{2}[/tex] open downwards