Find the volume of a square pyramid with base edges of 48 cm and a slant
height of 26 cm.



A) 11,520 cm3


B) 23,040 cm3


C) 7,680 cm3


D) 768 cm3

Respuesta :

The height of this pyramid will be:

√(26^2 - (48/2)^2) = 10cm

So the volume is: V = 1/3 * 48^2 * 10 = 7680 cm^3

Answer:- C) [tex]7,680\ cm^3[/tex]


Explanation:-

Given: Base edge of square pyramid a= 48 cm

Slant height square pyramid l =26 cm

Let h be the height of the right pyramid

Thus,

[tex]h^2=l^2-(\frac{a}{2})^2=26^2-(\frac{48}{2})^2=676-576=100\\\\\Rightarrow\ h=\sqrt{100}=10[/tex]

The volume of square pyramid[tex]=\frac{1}{3}a^2h=\frac{1}{3}(48)^2(10)=7680\ cm^3[/tex]

Thus C is the right option.The volume of square pyramid= [tex]7,680\ cm^3[/tex]