Respuesta :
Answer:
No, the function has no real number zeros
Step-by-step explanation:
we know that
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]f(x)=2x^{2} -3x+3[/tex]
equate the function to zero
so
[tex]2x^{2}-3x+3=0[/tex]
[tex]a=2\\b=-3\\c=3[/tex]
substitute in the formula
[tex]x=\frac{3(+/-)\sqrt{(-3)^{2}-4(2)(3)}} {2(2)}[/tex]
[tex]x=\frac{3(+/-)\sqrt{9-24}} {4}[/tex]
[tex]x=\frac{3(+/-)\sqrt{-15}} {4}[/tex]
remember that
[tex]i=\sqrt{-1}[/tex]
[tex]x=\frac{3+\sqrt{15}i} {4}[/tex]
[tex]x=\frac{3-\sqrt{15}i} {4}[/tex]
The function has no real number zeros
Since the discriminant is less than 0, hence the function has no real number zeros.
Discriminant of a function
The discriminant is used to determine the nature of a function. It is expressed as:
D = b^2 - 4ac
Given the quadratic function f(x) = 2x^2 – 3x + 3
a = 2
b = -3
c = 3
Substitute into the expression to have:
D = (-3)^2 - 4(2)(3)
D = 9 - 24
D = -15
Since the discriminant is less than 0, hence the function has no real number zeros.
Learn more on discriminant here: https://brainly.com/question/2507588