Answer:
C. 14.7 cubic inches
Step-by-step explanation:
We are given two cups A and B resembling a cone and a cylinder respectively.
Cup A: The radius of the base circle = 1 inch and the height of the cone = 4 inch
Thus, the volume of the cone = [tex]\frac{\pi r^{2}\times h}{3}[/tex]
i.e. Volume of the cone = [tex]\frac{\pi 1^{2}\times 4}{3}[/tex]
i.e. Volume of the cone = [tex]\frac{4\pi}{3}[/tex]
i.e. Volume of the cone = 4.19 [tex]inch^{3}[/tex]
The cup A holds 4.19 cubic inches of juice.
Cup B: The radius of the base circle = 1 inch and the height of the cylinder = 6 inch
So, the volume of the cylinder= [tex]\pi r^{2}\times h[/tex]
i.e. Volume of the cylinder= [tex]\pi 1^{2}\times 6[/tex]
i.e. Volume of the cylinder= [tex]6\pi[/tex]
i.e. Volume of the cylinder= 18.85 [tex]inch^{3}[/tex]
Thus, cup B holds 18.85 cubic inches of juice.
So, the difference in the volume = 18.85 - 4.19 = 14.66 [tex]inch^{3}[/tex]
Hence, cup B holds 14.66 cubic inches more juice than cup A.