Respuesta :
1.
write 1 as [tex]log_{4}4[/tex] so that we compare same base logarithms:
[tex] log_{4}[{ log_{4}}2x]= log_{4}4[/tex]
2. Neglect the equal bases and write the arguments:
So [tex]{ log_{4}}2x=4[/tex]
repeat step 1, that is write 4 as a logarithm with base 4:
[tex]4=4*1=4* log_{4}4= log_{4} 4^{4} [/tex]
3. [tex]{ log_{4}}2x=log_{4} 4^{4}[/tex]
[tex]2x=4^{4}[/tex]
[tex]x= \frac{4^{4}}{2}= 4^{3}*2=64*2=128[/tex]
write 1 as [tex]log_{4}4[/tex] so that we compare same base logarithms:
[tex] log_{4}[{ log_{4}}2x]= log_{4}4[/tex]
2. Neglect the equal bases and write the arguments:
So [tex]{ log_{4}}2x=4[/tex]
repeat step 1, that is write 4 as a logarithm with base 4:
[tex]4=4*1=4* log_{4}4= log_{4} 4^{4} [/tex]
3. [tex]{ log_{4}}2x=log_{4} 4^{4}[/tex]
[tex]2x=4^{4}[/tex]
[tex]x= \frac{4^{4}}{2}= 4^{3}*2=64*2=128[/tex]
The true solution to the logarithmic equation log4[log4(2x] = 1 will be x = 128.
To solve the equation we will be using Logarithm.
Given :
log4[log4(2x] = 1
How to solve the logarithmic equation?
Logarithmic equations are the equations containing log expression.
We will first write the equation [tex]log_{4}4[/tex] then we compare the same base logarithms,
[tex]\rm log_{4}[log_{4}2x] = log_{4}4[/tex]
Now, we neglect the equal bases & then we write the arguments.
[tex]\rm log _{4}2x=4[/tex]
Now, we repeat first line then we write 4 as a logarithm with base 4:
[tex]\rm 4= 4\times 1 =4 \times log_{4}4=log_{4}4^4[/tex]
On solving further we get,
[tex]\rm log_{4}2x=log_{4}4^4\\\\2x=4^4\\\\x=\dfrac{4^4}{2}=4^3\times2=64\times2=128[/tex]
Therefore, The true solution to the logarithmic equation log4[log4(2x] = 1 will be x = 128.
Learn more about Logarithm here:
https://brainly.com/question/4102150