Answer:
1.6 units
Step-by-step explanation:
Coordinates of A : (-1,1)
Coordinates of B : (3,2)
Coordinates of C :( -1,-1)
Now to find the length of the sides of the triangle we will use distance formula :
[tex]d =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
To find length of AB
A = [tex](x_1,y_1)=(-1,1)[/tex]
B= [tex](x_2,y_2)=(3,2)[/tex]
Now substitute the values in the formula:
[tex]d =\sqrt{(3-(-1))^2+(2-1)^2}[/tex]
[tex]d =\sqrt{(4)^2+(1)^2}[/tex]
[tex]d =\sqrt{16+1}[/tex]
[tex]d =\sqrt{17}[/tex]
[tex]d =4.12[/tex]
Now to find length of BC
B= [tex](x_1,y_1)=(3,2)[/tex]
C = [tex](x_2,y_2)=(-1,-1)[/tex]
Now substitute the values in the formula:
[tex]d =\sqrt{(-1-3)^2+(-1-2)^2}[/tex]
[tex]d =\sqrt{(-4)^2+(-3)^2}[/tex]
[tex]d =\sqrt{16+9}[/tex]
[tex]d =\sqrt{25}[/tex]
[tex]d =5[/tex]
Now to find length of AC
A = [tex](x_1,y_1)=(-1,1)[/tex]
C = [tex](x_2,y_2)=(-1,-1)[/tex]
Now substitute the values in the formula:
[tex]d =\sqrt{(-1-(-1))^2+(-1-1)^2}[/tex]
[tex]d =\sqrt{(0)^2+(-2)^2}[/tex]
[tex]d =\sqrt{4}[/tex]
[tex]d =2[/tex]
Thus the sides of triangle are of length 4.12, 5 and 2
Now to find area of triangle we will use heron's formula :
To calculate the area of given triangle we will use the heron's formula :
[tex]Area = \sqrt{s(s-a)(s-b)(s-c)}[/tex]
Where [tex]s = \frac{a+b+c}{2}[/tex]
a,b,c are the side lengths of triangle
a = 4.12
b=5
c=2
Substitute the values
Now substitute the values :
[tex]s = \frac{4.12+5+2}{2}[/tex]
[tex]s =5.56[/tex]
[tex]Area = \sqrt{5.56(5.56-4.12)(5.56-5)(5.56-2)}[/tex]
[tex]Area = 3.99[/tex]
Now to find the height of altitude corresponding to side BC
So, formula of area of triangle [tex]=\frac{1}{2} \times Base \times Height[/tex]
Since Area = 3.99 square units
So,[tex]3.99 =\frac{1}{2} \times BC \times Height[/tex]
So,[tex]3.99 =\frac{1}{2} \times 5\times Height[/tex]
[tex]3.99 =2.5 \times Height[/tex]
[tex]\frac{3.99}{2.5}=Height[/tex]
[tex]1.596=Height[/tex]
Thus the altitude corresponding to the BC is of length 1.596 unit ≈ 1.6 units
Thus Option D is correct.