A 20 liter cylinder of helium at a pressure of 150 atm and a temperature of 27°C is used to fill a balloon at 1.00 atm and 37°C. What is the volume of the balloon?

Respuesta :

The number of moles will remain the same in the two cases

so we can equate using ideal gas equation which is PV =nRT

Where

P = Pressure

V = volume

n = moles

R = gas constant

T = temperature

for the two conditions

[tex]\frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}}[/tex]

Putting values

[tex]\frac{P_{1}V_{1}}{T_{1}} =\frac{150X20}{300}=\frac{P_{2}V_{2}}{T_{2}}=\frac{1XV_{2}}{310}[/tex]

Thus

V2 = 3100 L

Explanation:

The given data is as follows.

  [tex]V_{1}[/tex] = 20 liter,          [tex]V_{2}[/tex] = ?

  [tex]P_{1}[/tex] = 150 atm,         [tex]P_{2}[/tex] = 1.00 atm

  [tex]T_{1}[/tex] = 27 + 273 = 300 K,     [tex]T_{2}[/tex] = 37 + 273 = 310 K

Therefore, calculate the value of [tex]V_{2}[/tex] as follows

        [tex]\frac{P_{1}V_{1}}{T_{1}}[/tex] = [tex]\frac{P_{2}V_{2}}{T_{2}}[/tex]

[tex]\frac{150 atm \times 20 liter}{300 K}[/tex] = [tex]\frac{1.00 atm \times V_{2}}{310 K}}[/tex]

       [tex]V_{2} = \frac{10 atm L K^{-1} \times 310 K}{1.00 atm}[/tex]

                        = 3100 liter

Therefore, we can conclude that the volume of the balloon is 3100 liter.