Respuesta :

[tex]|AC|=\sqrt{|AD|^2+|CD|^2}\\ |CD|=8\\ |AD|=?\\\\ |AD|=|AB|-|BD|=21-|BD|\\ |BD|=\sqrt{|CB|^2-|CD|^2}\\ |BD|=\sqrt{17^2-8^2}\\ |BD|=\sqrt{289-64}\\ |BD|=\sqrt{225}\\ |BD|=15\\\\ |AD|=21-15\\ |AD|=6\\\\ |AC|=\sqrt{6^2+8^2}\\ |AC|=\sqrt{36+64}\\ |AC|=\sqrt{100}\\ |AC|=10[/tex]

By using Pythagoras theorem, Side of triangle AC is 10.

What is Pythagoras theorem ?

The Pythagoras theorem states that if a triangle is right-angled (90 degrees), then the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Triangle CBD is a right angled triangle. <CDB = [tex]90^{0}[/tex], CD = 8, CB  = 17

By using  Pythagoras theorem

So, [tex]BD^{2} +CD^{2} =BC^{2}[/tex]

[tex]BD^{2} +8^{2} =17^{2}[/tex]

[tex]BD^{2} = 289 - 64[/tex]

[tex]BD^{2} =225[/tex]

[tex]BD =\sqrt{225}[/tex]

[tex]BD = 15[/tex]

Because AB = 21, AD = AB - BD

So, AD = 6

Because triangle ACD is a right angled triangle, AD = 6, CD = 8, <CDA = [tex]90^{0}[/tex]

So, [tex]AC^{2} = AD^{2} +CD^{2}[/tex]

[tex]AC^{2} = 6^{2} +8^{2}[/tex]

[tex]AC^{2} = 36 + 64[/tex]

[tex]AC^{2}= 100[/tex]

[tex]AC =\sqrt{100}[/tex]

[tex]AC = 10[/tex]

Hence, side of triangle AC is 10.

Find out more information about Pythagoras theorem here

https://brainly.com/question/343682

#SPJ2