Respuesta :

hello : 
f(x) = 8x² + 2x - 5
f(x) = 8(x²+1/4 x)-5
f(x) = 8(x²+2(1/8)x +(1/8)² -(1/8)² ) -5
f(x) = 8((x+1/8)²-1/8-5
f(x) = 8(x+1/8)²-41/5....(vertex form)

Answer:

[tex]y=8(x+\frac{1}{8} )^{2} -\frac{41}{8}[/tex]

Step-by-step explanation:

The given quadratic function is

[tex]f(x)=8x^{2} +2x-5[/tex]

Where [tex]a=8[/tex], [tex]b=2[/tex] and [tex]c=-5[/tex].

Now, let's find the vertex, which coordinates are [tex]V(h,k)[/tex], and [tex]h=-\frac{b}{2a}[/tex]

Replacing each value, we have

[tex]h=-\frac{2}{2(8)}=-\frac{1}{8}[/tex]

Then, [tex]k=f(h)[/tex], so

[tex]f(-\frac{1}{8} )=8(-\frac{1}{8} )^{2} +2(-\frac{1}{8} )-5=\frac{1}{8}-\frac{1}{4} -5=\frac{1-2-40}{8}\\ k=-\frac{41}{8}[/tex]

So, the vertex is

[tex]V(-\frac{1}{8},-\frac{41}{8})[/tex] and [tex]a=8[/tex]

Therefore, the vertex form is

[tex]y=a(x-h)^{2}+k\\ y=8(x+\frac{1}{8} )^{2} -\frac{41}{8}[/tex]