Respuesta :
[tex]\bf f(x)=-(x+8)(x-14)\implies f(x)=-(x^2-6x-112)
\\\\\\
f(x)=-x^2+6x+112\\\\
-------------------------------\\\\
\textit{vertex of a parabola}\\ \quad \\
\begin{array}{lccclll}
f(x)=&-1x^2&+6x&+112\\
&\uparrow &\uparrow &\uparrow \\
&a&b&c
\end{array}\qquad
\left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)[/tex]
so the y-coordinate is then [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}[/tex]
so the y-coordinate is then [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}[/tex]
Answer:
y-value of the vertex of the given function is 121.
Step-by-step explanation:
Given function f(x) = -( x + 8 )( x - 14 )
We need to find y-coordinate of the vertex of the function.
let, y = -( x + 8 )( x - 14 )
y = -( x( x - 14 ) + 8( x - 14 ) )
y = -( x² - 14x + 8x - 112 )
y = -( x² - 6x - 112 )
Clearly this equation is of parabola. So, now we use completing the square method to write this equation in standard equation of parabola.
y = -( x² - 6x + 3² - 3² - 112 )
y = -( x - 3 )² - ( -9 - 112 )
y = -( x - 3 )² + 121
y - 121 = -( x - 3 )²
( x - 3 )² = -( y - 121 )
y-coordinate of the vertex of the parabola is 121.
Therefore, y-value of the vertex of the given function is 121.